
Characterization of human embryonic stem cell lines
by the International Stem Cell Initiative
The International Stem Cell Initiative1

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide.

Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression

patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the

keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90),

tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG,

POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical:

differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-

specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily

detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or

cytopathic viruses was detected.

Since 1998, when the first human embryonic stem (hES) cell lines
were reported, a plethora of genetically diverse cell lines have been
derived from human blastocysts. Techniques for their derivation and
subsequent cell culture have varied from laboratory to laboratory1.
Combined with the intrinsic genetic variation in the human samples,
any of these additional sources of variation could lead to the selection
of hES cell lines with substantially different properties. The available
data also suggest differences between human and mouse ES (mES)
cells2–4. Despite the opportunity for genetic and environmental
influences affecting the phenotype of hES cell lines isolated by different
investigators, few lines have been subjected to in-depth analysis, and
new isolates are often published without detailed characterization
data. As a consequence it is uncertain whether the different isolates of
hES cells are indeed very similar, or whether significant differences
exist between the various lines. To address this issue, The International
Stem Cell Initiative (ISCI)5 was established by the International
Stem Cell Forum (http://www.stemcellforum.org.uk) to carry out a
comparative study of a large and diverse set of hES cell lines
derived and maintained in different laboratories worldwide. The
goals of this study, the results of which we now report, were to
assess the similarities and differences in the expression of commonly
used markers of hES cells among as many as possible hES cell
isolates, and to identify a set of well-validated markers to establish
hES cell identity.
Several approaches have been used to characterize hES cells, but the

most widespread are analyses of cell surface–antigen phenotype, often
by flow cytofluorimetry, and gene expression studies, commonly
assessed by RT-PCR and, increasingly, by microarray analyses, for
example6–11. Many cell-surface antigens used to identify hES cells were
first detected using antibodies prepared against preimplantation

mouse embryos and/or against mouse or human embryonal carci-
noma (hEC) cells3,12. Likewise, several gene products that are func-
tionally associated with maintenance of the undifferentiated ES cell
state were first recognized in mES cells, most notably POU5F1
(refs. 13–15), NANOG (refs. 16,17) and SOX2 (ref. 18). Other
developmentally regulated genes, such as TDGF19, and many identi-
fied in microarray studies have been postulated to play key functions
in hES cells, but there is less evidence to support their role in
maintenance of the undifferentiated state. Nevertheless, they may
represent useful markers for identification of pluripotent stem cells.
Several studies have compared patterns of gene expression in various
hES cell lines, with some reporting similarities6–8,20,21 and others
emphasizing differences10,11,22 between different hES cell lines. How-
ever, these studies used only small numbers of hES cell lines.
ES cells are derived from early embryos at a time when epigenetic

reprogramming is occurring23, and it is unclear whether their epige-
netic status is stable or subject to perturbation. Imprinted genes,
whose parent-of-origin–dependent expression is epigenetically regu-
lated, have variable allele-specific expression and methylation patterns
in some mES cells24,25. In contrast, studies of a limited number of hES
cells suggest that genomic imprinting in hES cells is rather more
stable26,27, but the generality of this conclusion remains in question.
To provide a more comprehensive assessment of the hES pheno-

type, the present ISCI study analyzed 59 independently derived hES
cell lines, from 17 laboratories in 11 countries, for expression of 17
cell-surface antigens and 93 genes, chosen as potential markers of the
undifferentiated stem cells or their differentiated derivatives. In addi-
tion, the allele-specific expression status of ten imprinted genes was
examined in those cell lines with distinct alleles. The micro-
biological status of the lines was also assessed, and the histology of a
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sample of xenograft teratomas was reviewed. Overall, the data show
that all the independent hES cell lines studied exhibited a common
expression pattern for a specific set of marker antigens and genes,
despite their different genetic backgrounds and their derivation in
different laboratories using different techniques. Although more subtle
differences between the lines, either in phenotype or in behavior upon
differentiation, cannot be excluded, this study provides no evidence
for markedly distinct subsets of hES cell lines.

RESULTS

Cell-surface antigens

We examined the expression of a panel of cell-surface antigens
widely used as markers of hES and hEC cells (Fig. 1a, Supplementary
Tables 1 and 2 online). An example of the expression patterns in one
line, HUES1, is provided in Supplementary Figure 1 online. These
are: the globoseries glycolipid antigens SSEA3 (ref. 28) and SSEA4
(ref. 29); the keratan sulfate antigens TRA-1-60, TRA-1-81 (ref. 30),
GCTM2 and GCTM343 (ref. 31); and a miscellaneous set of protein
antigens comprising the two liver alkaline phosphatase antigens TRA-
2-54 and TRA-2-49 (ref. 32), Thy1 (ref. 33), CD9 (ref. 34), and HLA

class 1 antigens35,36. Several antigens commonly expressed following
hES differentiation33, SSEA1, A2B5, CD56 (NCAM), GD2 and GD3,
were also analyzed. These all showed substantially lower expression
than those commonly used as hES markers (Fig. 1a). In addition,
expression of the pan-human antigen TRA-1-85 (Oka)37 was assessed.
The relationship between the different cell lines was examined by

cluster analysis (Fig. 1b). Overall, a high proportion of cells in all the
hES cell lines examined expressed cell-surface antigen markers pre-
viously associated with undifferentiated stem cells, whereas few cells
expressed markers associated with differentiated derivatives. The
former group of antigens includes SSEA3 and SSEA4, which appear
to be expressed on a lower proportion of the hES cells than the keratan
sulfate–associated antigens, a finding consistent with the notion that
that SSEA3 and SSEA4 expression is more rapidly downregulated on
differentiation than the keratan sulfate antigens33,38. Only subtle
quantitative differences were found between the various hES cell
lines, most likely reflecting variation in culture conditions; for
example, the cell lines CA1 and CA2, when assayed after culturing
in two different media, appeared in separate clusters, but these were
based upon only small quantitative changes in levels of expression and
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Figure 1 Surface-antigen expression patterns of undifferentiated hES cells. (a) Box and whisker plots illustrating the range of percent antigen positive cells

in cultures of undifferentiated human ES cells. This analysis was carried out on data from those cell lines (44 cell lines from 12 laboratories), which met
FACS quality control criteria defined using the reference standard hEC cell line, 2102Ep (Supplementary Table 2). The open circles indicate outlying data

points. The antigens detected by each antibody are shown in parentheses: P3XAg8 (negative control), A2B5 (ganglioside GT3), B159 (NCAM), F15-14-1

(Thy-1), GCTM2 (GCTM2), GCTM343 (GCTM343), MC480 (SSEA1), MC631 (SSEA3), MC813-70 (SSEA4), TG30 (CD9), TRA-1-60 (TRA-1-60), TRA-1-81

(TRA-1-81), TRA-2-49 (liver alkaline phosphatase), TRA-2-54 (liver alkaline phosphatase), VIN2Pb22 (ganglioside GD2), VINIS56 (ganglioside GD3), W6/32

(HLA-A, B, C), TRA-1-85 (Oka). (b) Clustering of cell-surface antigen expression versus cell line. The heat map shows a two-way cluster analysis, using

Euclidean distance measures, carried out on the data from those cell lines (44 cell lines from 12 laboratories), which met FACS quality-control criteria

defined using the reference standard hEC cell line, 2102Ep, and for which two time points were available (Supplementary Table 2). Two cell lines (CA1 and

CA2) were grown in both standard and nonstandard (alternate) conditions (indicated by an asterisk). For each antibody, the average percent cells scored

positive (logit transformed) in two independent assays for each cell line is colored from green (low % positive) to red (high % positive); white indicates

missing data. (c) Immunofluorescence detection of surface antigens in hES cells. Fixed colonies of hES cells were stained with antibodies TRA-1-60

(HES-2), TG30 detecting CD9 (HES-2), SSEA4 (H1), and GCTM-2 (HES-2). Nuclei were counterstained with DAPI (TRA-1-60 and GCTM2, blue; TG30

and SSEA4, red). Scale bar, 85 mm.
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not on any significant qualitative differences. We could discern no
significant clustering linked to passaging technique. One cell line,
HES5, clustered separately from all the others, most likely the result of
spontaneous differentiation in this culture; that is, a higher proportion
of HES5 cells expressed the differentiation-marker antigens and a
lower proportion, the stem cell antigens. Thus, the panel of
antigens used in this study allows robust identification of undiffer-
entiated hES cells.
The same antigens were also assayed by indirect immunofluores-

cence of fixed hES cell cultures (Fig. 1c). In general the results

qualitatively matched the observations from flow cytometry, with
most cells in a given culture expressing the antigens associated with
the undifferentiated state, but with isolated cells or clusters of cells
expressing antigens associated with differentiated derivatives. For
example, antigens showing high levels of mean fluorescence intensity
by flow cytofluorimetry (e.g., SSEA4, TRA-1-60, GCTM2 and CD9)
were readily detected by in situ immunostaining, whereas detection of
SSEA3 reactivity was more variable. Some antigens, such as SSEA4 and
CD9, showed staining patterns typical of integral membrane compo-
nents, whereas others, such as the keratan sulfate antigens recognized
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Figure 2 Expression profiles of the archetypal hES genes, NANOG, POU5F1(OCT4) and TDGF. (a) The expression of NANOG, POU5F1 and TDGF

was estimated by quantitative RT-PCR and is shown as DeltaCt values (average of the two time points for each cell line), relative to b-actin, for both
undifferentiated hES cells (red line) and differentiated embryoid bodies derived from them (black line). Cell lines for which only single samples were

available were excluded from the analysis, though they, too, showed comparable levels of gene expression (see Supplementary Tables 3 and 4). The results

for several lines grown under both ‘standard’ and ‘alternate’ (*) conditions are included. For comparison, the corresponding bar charts indicate gene
expression in the undifferentiated hEC cell lines 2102Ep and NTERA2, as well as in differentiated NTERA2 cells induced by exposure to retinoic acid

(NTERA2.RA) for 7 d, and in the human foreskin fibroblast cell line, HS27. Note that an increase in DeltaCt value of 1.0 denotes a twofold decrease

in mRNA level. (b) Correlation of gene expression (DeltaCt values) for NANOG expression with that of POU5F1 and TDGF, genes expected to mark

undifferentiated hES cells, and with that of AFP and NEUROD1, genes that mark differentiation into endodermal and neural cell types, respectively.

Because the undifferentiated hES cultures and the embryoid bodies derived from them both appeared to contain variable proportions of undifferentiated

cells and their differentiated derivatives, data from both sets were combined in each scatter plot to estimate the coefficient of correlation for the expression

of each gene with NANOG. In this analysis, the data from the two time points were not averaged; undifferentiated and differentiated samples are indicated

by blues crosses and green triangles, respectively. Note the strong positive correlation of NANOG with POU5F1 and TDGF, consistent with the downregulation

of all three genes upon differentiation, and the negative correlation of AFP and NEUROD1 expression with that of NANOG, consistent with their

up-regulation upon differentiation.
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by GCTM2 and TRA-1-60, showed a granular pattern of reactivity
around the cell and on the culture surface characteristic of proteins
deposited in the pericellular matrix (Fig. 1c).

Gene expression

Quantitative RT-PCR was used to assay the expression of a series of
genes in stock cultures of undifferentiated hES cells and in differ-
entiated embryoid bodies derived from them (Supplementary Table 3
online). These genes had been previously suggested as markers of
undifferentiated hES cells or of their differentiated derivatives. Among
them, NANOG16,17, POU5F1 (ref. 13) and TDGF39 are well known to
be closely associated with the pluripotent state in both mES and hES
cells, and to be strongly downregulated upon their differentiation.
They can be regarded as archetypal pluripotent stem cell markers. The
level of expression of these three genes was remarkably consistent
across all the undifferentiated hES samples tested (Fig. 2a, red lines,
and Supplementary Table 4 online). Slightly higher levels (that is,
lower DeltaCt values), particularly of NANOG and TDGF, were
evident in the two undifferentiated hEC cell lines, 2102Ep and
NTERA2, included for comparison, probably a reflection of the
greater tendency for spontaneous differentiation in the hES cultures
(Fig. 2a, bar charts on right hand side). Rather more variation in the
levels of these three genes was seen in the hES embryoid body samples
(Fig. 2a, black lines), although their continued expression suggested
the persistence of undifferentiated stem cells in these preparations. For
reference, the differentiated NTERA2 cells induced by retinoic acid,
and a human fibroblast line, expressed substantially lower levels of all
three genes compared with the undifferentiated hEC cells. In undiffer-
entiated hES and differentiated embryoid body samples analyzed
separately (data not shown), and in combined datasets (Fig. 2b),
the levels of expression of the three archetypal stem cell genes,
NANOG, POU5F1 and TDGF, were strongly positively correlated
whereas their expression was negatively correlated with the levels of

expression of AFP and NEUROD1, markers commonly associated
with differentiation to extraembryonic endoderm and neurectoderm,
respectively. This is consistent with variable levels of expression of the
pluripotency genes among different cell lines being a result of variable
levels of spontaneous differentiation.
We next tested pair-wise correlations in expression with other genes

in the panel, using NANOG as a reference, and the combined data
from ‘undifferentiated’ and ‘differentiated’ (embryoid body) samples
(Fig. 3). This combination provides a dataset containing a wider range
of stem-to-differentiated cell proportions than either dataset alone,
and so a more powerful test to discriminate between genes that mark
the undifferentiated and differentiated cells. In this analysis expression
of five genes showed a high correlation with that of NANOG (r Z
0.75): TDGF, POU5F1, GABRB3, GDF3 and DNMT3B. All of these
genes have been previously identified as expressed in undifferentiated
hEC and hES cells8, and as showing developmental regulation upon
hES differentiation40. We suggest that these six genes constitute a core
set of markers that could be used to define undifferentiated hES cells.
Among the 59 independent hES cell lines from the primary labora-
tories and the four duplicates from the secondary laboratories studied
here, none failed to express these genes.
Expression of an additional 14 genes (FGF4, GAL, LEFTB, IFITM1,

NODAL, TERT, UTF1, FOXD3, EBAF, LIN28, GRB7, PODXL, CD9,
BRIX) showed a marked, though weaker correlation (r o 0.75; r Z
0.5) with that of NANOG. Each hES line studied here expressed each
of these genes. Most of these have also been previously associated with
undifferentiated hES cells (Supplementary Table 3), but the lower
correlations with expression of NANOG most likely reflect their more
widespread expression in derivatives differentiating from hES cells. A
notable instance is SOX2, which is not included in this set of genes
as its expression showed an even slightly lower correlation with
that of NANOG (r ¼ 0.47); SOX2 is thought to play a role in
undifferentiated hES cells, and is closely linked in a regulatory loop
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Figure 3 Pairwise correlation of expression of NANOG with that of all tested genes. The pairwise correlation coefficient of NANOG expression with the

expression of each gene analyzed was calculated from the combined data for the undifferentiated hES samples and differentiated embryoid body samples,

and plotted in descending order. In this analysis, the data from the two time points were not averaged. Expression of five genes, TDGF, POU5F, GABRB3,

GDF3 and DNMT3B, showed very strong correlations with NANOG expression (r Z 0.75), whereas 14 additional genes, FGF4, GAL, LEFTB, IFITM1,

NODAL, TERT, UTF1, FOXD3, EBAF, LIN28, GRB7, PODXL, CD9 and BRIX showed strong but lower correlation (0.75 4 r Z 0.5).
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with NANOG and POU5F1 (refs. 41,42), but it is also expressed in the
neurectoderm lineage43.
Apart from the expression of a number of genes showing weak

positive correlations with that of NANOG, the expression of several
exhibited strong negative correlations, consistent with the view that
they are not expressed by the undifferentiated cells and are good
markers of differentiation. Indeed these genes had been selected, a
priori, as candidates to identify the appearance of particular differ-
entiated lineages. For example, genes whose expression showed a
negative correlation with that of NANOG (r o –0.25) included
CDX2 and CGB (encoding the beta chain of human chorionic
gonadotropin, bHCG), associated with trophectoderm differentia-
tion44; GATA6 (ref. 45) and AFP46, associated with extraembryonic
endoderm; and PAX6 (ref. 47) and NEUROD1 (ref. 48), associated
with the neural lineage.
We next examined whether a two-way cluster analysis of gene

expression in the undifferentiated samples would reveal any significant
groupings of genes or significant differences between groups of cell

lines (Fig. 4 and Supplementary Table 4 online). Indeed, this analysis
revealed a substantial cluster of genes expressed by essentially all
the undifferentiated hES cell samples, and included those genes
that were downregulated upon differentiation, identified in the
above correlation analysis. It also included a set of genes that are
commonly associated with differentiated cell lineages, such as
FN1, ACTC, LAMA1, AFP, EOMES, GATA4, FOXA2, GATA6,
SOX17, FLT1, SYP, COL2A1 and COL1A1. Whether these are
expressed in the undifferentiated stem cells themselves or in a set
of differentiated derivatives that are always present in association
with the undifferentiated cells as a result of spontaneous differentia-
tion cannot be ascertained from the present data. It is notable that
many of these genes are thought to be expressed by extraembryonic
endoderm, which might be an inevitable early derivative of ES cells
to appear on differentiation. In this regard, CGB (HCG-b), GCM1
and CDX2, which are markers of trophectodermal cells, the
other extraembryonic lineage produced by hES cells, were not
inevitably present.
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Figure 4 Two-way cluster analysis of hES cell lines with respect to gene expression. Hierarchical clusters were generated for the cell lines and gene

expression levels from the undifferentiated hES cell samples; when data for two time points for a given cell line were available the results were averaged

(Supplementary Table 4). The levels of gene expression relative to b-actin are indicated by the color change from red (high expression levels; low DeltaCt)

to green (low expression levels, high DeltaCt); white indicates missing data. The results for several lines grown under both ‘standard’ and ‘alternate’ (*)

conditions, or grown in separate primary and secondary laboratories (+) are included. Note cell line CF-1 is now renamed KCL-003-CF-1.
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However, this cluster analysis provided no evidence of any
discrete subsets of the hES cell lines in which the undifferentiated
cells differed qualitatively with respect to the expression of the core
stem cell genes identified above. Some clustering of lines was apparent,
but inspection suggested that this was largely due to subtle quantita-
tive differences in levels of gene expression and could be most easily

explained by varying amounts of spontaneous differentiation occur-
ring in the cultures from which RNA was isolated. This was most
marked in a cluster comprising H14, H7, H13 and H9. These showed
somewhat higher expression of genes associated with differentiation,
most strikingly AFP, and lower levels of various stem cell associated
genes, suggesting that the particular cultures analyzed contained a
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Figure 5 Two-way cluster analysis of differentiated hES cell lines with respect to gene expression. Hierarchical clusters were generated for the cell lines and

gene expression levels from the differentiated hES cell samples; when data for two time points for a given cell line were available, the results were averaged

(Supplementary Table 4). The levels of gene expression relative to beta-actin are indicated by the color change from red (high expression levels; low DeltaCt)

to green (low expression levels, high DeltaCt); white indicates missing data. The results for several lines grown under both ‘standard’ and ‘alternate’ (*)

conditions, or grown in separate primary and secondary laboratories (+) are included.
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higher proportion of differentiated cells than the average across all the
samples. When we examined cases where the same lines were grown in
standard and alternate conditions (e.g., the two lines CA1 and CA2
grown with and without plasminate, and the HES1-5 lines grown in
KSR or FCS), there were some quantitative differences in gene
expression levels, but no consistent clustering that could be ascribed
to variations in the media. More likely, these differences also reflected
random fluctuations in the levels of spontaneous differentiation.
We finally examined a two-way cluster analysis of gene expression in

the differentiated samples (Fig. 5). All expressed those genes identified
above as characteristic of undifferentiated hES cells, indicating the
continued presence of undifferentiated stem cells in these embryoid
body preparations. In addition, there were significant variations in
expression of a number of genes associated with distinct pathways of
differentiation. For example, PAX6, a neural lineage marker, was
expressed strongly in the embryoid bodies of some lines but not
others. However, given the stochastic nature of differentiation in
embryoid bodies and the difficulties of standardizing this method,
these results cannot be taken to indicate intrinsic differences between
the hES cell lines in their capacity for differentiation. More detailed
studies would be required to test such a hypothesis.

Imprinting and X inactivation

To address the epigenetic status of hES cell lines, we assessed the allele-
specific expression of ten genes subject to genomic imprinting
(Table 1). Of the 59 independent hES cell lines submitted to the
ISCI, 46 provided informative heterozygous polymorphisms within
one or more of these imprinted genes. Occasionally, allele-specific
imprinted gene expression patterns were different between samples of
the same hES cell line, perhaps reflecting epigenetic changes between
different time points. However, because the structure of the study did
not permit detailed follow-up, it was not possible to exclude technical
problems in individual cases. Accordingly, conclusions have been

drawn from the data as a whole on the basis of samples analyzed
rather than from individual cell lines (Table 1 and Supplementary
Table 5 online).
Overall, monoallelic expression of imprinted genes was the most

common result observed. Thus, of the six paternally expressed genes
studied, four (IPW, SNRPN, KCNQ1OT1 and PEG3) showed mono-
allelic expression in all samples of all the cells analyzed. Of the four
maternally expressed genes studied, two (H19 and NESP55) were
predominantly monoallelically expressed, although in each case one
sample from a single cell line was scored biallelic (Table 1). Of the
remaining genes, the paternally expressed gene IGF2 and the mater-
nally expressed gene MEG3 were mostly monoallelically expressed,
although a substantial proportion of samples (B20–30%) were scored
as partial- or bi-allelically expressed. On the other hand, the paternally
expressed gene MEST and the maternally expressed gene SLC22A18
were predominantly bi-allelically expressed, albeit with a substantial
proportion (420%) of mono- and partial-allelic samples.
As a further assessment of epigenetic status, we looked for evidence

of X chromosome inactivation in female cell lines. In both hES and
mES cells, the absence of X inactivation in the undifferentiated cells,
with subsequent inactivation upon differentiation, has been
reported49,50. However, this is not invariably the case, and instances
of inactive X chromosomes in undifferentiated cells have also been
reported40,50,51. We therefore tested the expression of XIST in all the
hES samples submitted to the ISCI (Fig. 6). With the exception of the
undifferentiated samples of one line, H13, all the karyotypically male
hES lines expressed low or undetectable levels of XIST (DeltaCt4 13)
(Fig. 6a). Within the context of the current screen, the individual
significance of the one outlier cannot be assessed. By contrast, the
female hES lines fell into two broad groups (Fig. 6b), one group in
which XIST levels were low or undetectable (DeltaCt4 13), matching
the male lines, and a second group in which XISTwas readily detect-
able (DeltaCt o 10). These results indicate marked heterogeneity

Table 1 Summary of allele-specific imprinted gene expression analysisa

Imprinting status of samples analyzed

Monoallelic

(0–14% minor allele)

Partial-allelic

(15–29% minor allele)

Biallelic

(30–50% minor allele)

Number of different hES

cell lines analyzed

Paternally expressed genes

SNRPN 66 0 0 24

IPW 30 0 0 14

KCNQ1OT1 54 0 0 23

PEG3 8 0 0 3

IGF2b 37 5 10 20

MEST c 9 9 20 16

Maternally expressed genes

H19 53 0 1 20

NESP55 11 0 1 9

MEG3d 9 0 3 7

SLC22A18e 1 6 16 11

Totals (349 samples) 278 (79.7%) 20 (5.7%) 51 (14.6%) 46 different lines

aThe contribution of ‘minor’ allele expression to total expression of each gene was determined by calculating the area under the peak from cDNA sequencing chromatograms. Results were grouped
into monoallelic (0–14% minor allele contribution to total gene expression), partial-allelic (15–29% minor allele contribution) and biallelic (30–50% minor allele contribution). The number of
individual samples analyzed does not equal the number of hES cell lines studied; this is because each of the hES lines was represented by samples at more than one time point or differentiation
status, and conversely, not all of the samples produced analyzable DNA and RNA (see Supplementary Table 5 for a detailed summary of the time points, status and yield of samples for each hES
line). bTwenty cell lines (out of 20 analyzed) provided one or more samples that were monoallelic for IGF2, with 12 lines monoallelic in every sample. Six cell lines provided one or more samples
that were biallelic for IGF2, but none of the lines examined were biallelic in every sample. cFive cell lines (out of 16 analyzed) provided one or more samples that were monoallelic for MEST, with
three lines monoallelic in every sample. Eleven cell lines provided one or more samples that were biallelic for MEST, with six lines biallelic in every sample. dAll samples of the hES line HES-4
were biallelic for MEG3 (n ¼ 3). eEight cell lines (out of 11 analyzed) provided one or more samples that were biallelic for SLC22A18, with six lines biallelic in every sample.

NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 7 JULY 2007 809

R E S O U R C E
©

20
07

 N
at

u
re

 P
u

b
lis

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/w
w

w
.n

at
u

re
.c

o
m

/n
at

u
re

b
io

te
ch

n
o

lo
g

y



between the female hES cell lines with respect to X-chromosome
inactivation, a conclusion reflected by the contrasting results pre-
viously reported40,50,51. The reasons for this variability might relate to
the X-chromosome inactivation state of the particular embryonic cells
from which individual hES lines were derived, but it may be related to
either cellular differentiation within the hES cell culture50 or adapta-
tion to culture conditions40.

Microbiology of feeder cells and hES cell lines

Sixteen human and mouse feeder cell samples were submitted from
different laboratories, representing the feeder cells on which the hES
cells were maintained. All tested negative for bacterial, fungal and
mycoplasma contamination. Also, in cell line inoculation tests, with
subsequent testing for hemadsorption of chick and guinea pig red
blood cells, no evidence of viral infection was revealed, and these same
cells showed no evidence of viral particles, inclusion bodies or aligned
or unaligned viral nucleoprotein by transmission electron microscopy.
Of the 59 independent hES cell lines studied, samples from 58 were
submitted from the primary laboratories for microbiology, together
with an additional four from the secondary laboratories. One sample
was positive for fungal contamination; none were positive for bacteria
or mycoplasma. In a minority of cases (eight cell lines; Supplementary
Table 6) antibiotics had been used in growth media sampled for
sterility tests. Consequently, in these few cases, we cannot exclude the
presence of low-level contamination, which could have been masked
by the presence of antibiotics. None of the hES lines showed any
evidence of viral infection when assayed, as described above for the
feeder cells.

Xenografted tumors

A systematic study of the conditions that affect the development of
xenografted human ES cell–derived tumors was not planned within
the present study. Nevertheless, we were able to obtain a review by a
well-qualified clinical pathologist, with long experience of teratoma
biology, of 37 histological slides from xenograft tumors produced
from 15 independent hES lines in immunocompromised mice by the
participating laboratories. In almost all cases the tumors were tera-

tomas, benign tumors composed of somatic tissues derived from each
of the three embryonic germ layers—ectoderm, mesoderm and
endoderm (Supplementary Fig. 2). Ectodermal and mesodermal
tissues predominated, most with the appearance of mature somatic
tissues. However, neural tissue was often present in the form of
immature embryonic neural rosettes. Mesodermal tissues were
found in all grafts, and included fibroblasts and capillaries, smooth
muscle, striated muscle, cartilage, bone and fat cells. Endodermal
tissues included gland-like structures lined with columnar or cuboidal
epithelium, which occasionally contained mucus-secreting goblet cells
or ciliated cells, and even cells resembling intestinal Paneth cells. Three
grafts contained foci of undifferentiated cells, which had the morpho-
logic features of hEC cells. The nature of these EC-like cells could not
be determined, but they might represent either residual, undifferen-
tiated hES cells or hES cells that had undergone malignant transfor-
mation into true embryonal carcinomas. In one case, the investigator
had explanted the tumor and observed outgrowth of karyotypically
abnormal cells with a phenotype consistent with both hES and
hEC cells52.

DISCUSSION

The current study is an initial attempt to provide a systematic and
comparative survey of the many different human ES cell lines
established and maintained by various groups around the world.
Previously, some smaller-scale comparisons of lines maintained in
single laboratories have been undertaken22. It is difficult to know
exactly how many lines have so far been derived, although estimates
range from 200 to 4300 (refs. 53,54). The current panel of 59
independent lines provides a representative sample of those readily
available worldwide. Overall, the microbiological assays pointed to the
high standards of cell culture in the different laboratories and the
absence of significant contamination from adventitious agents.
In such a survey, detailed studies of individual lines are not possible

and, inevitably, obtaining complete sets of data for each submitted line
is subject to the vagaries of experimental variation. Thus, fluorescence-
activated cell sorting (FACS) or gene expression data were not
obtained for all time points for every cell line. In particular, difficulties

Cell line Cell line

H
U

E
S

10
H

U
E

S
11

H
U

E
S

13
H

U
E

S
16

H
U

E
S

17
H

U
E

S
3

H
U

E
S

7
H

U
E

S
8

B
G

01
B

G
02 I6

B
G

01
+

W
A

01
+

S
H

E
F

F
1

S
H

E
F

F
3

C
A

1*
C

A
2

C
A

2*
K

H
E

S
3

F
E

S
21

F
E

S
22

F
E

S
29

H
E

S
4

H
E

S
4*

H
E

S
5

M
E

L1
S

A
00

1
H

S
F

1-
14 H
1*

H
13

*
H

14
*

A
ve

ra
ge

 D
el

ta
 C

t

0

5

10

15

20

25

H
U

E
S

1
H

U
E

S
12

H
U

E
S

14
H

U
E

S
15

H
U

E
S

4
H

U
E

S
5

H
U

E
S

6
H

U
E

S
9

H
S

18
1

B
G

03
C

C
T

L-
12

C
C

T
L-

14
C

C
T

L-
9 I3

T
E

03
+

U
C

06
C

F
1

S
H

E
F

F
2

H
E

S
C

-N
L1

H
E

S
C

-N
L1

*
K

H
E

S
1

K
H

E
S

2
F

E
S

30
H

E
S

1
H

E
S

1*
H

E
S

2
H

E
S

2*
H

E
S

3
H

E
S

1+
M

E
L2

M
E

L2
*

A
ve

ra
ge

 D
el

ta
 C

t

0

5

10

15

20

25a b

Figure 6 XIST expression in male and female hES cell lines. (a,b) The level of XIST expression (estimated as DeltaCt values relative to b-actin) is shown

separately for those karyotypically male (a) and female (b) undifferentiated hES cell lines. When results from two time points were available, these have been
averaged. Note that an increase in DeltaCt value of 1.0 denotes a twofold decrease in mRNA level. Note cell line CF-1 is now renamed KCL-003-CF-1. The

results for several lines grown under both ‘standard’ and ‘alternate’ (*) conditions, or grown in separate primary and secondary laboratories (+) are included.
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in standardizing FACS assays of surface-antigen expression in different
laboratories became apparent as we analyzed the data collected,
despite the provision of common batches of antibodies and protocols.
This points to a need to develop standards for these tests, which will be
addressed in the second ISCI that is currently being planned.
Certainly, there were differences between the hES cell lines included

in the current ISCI study, for example, variable XIST expression in the
female lines, and differences in the imprinting status of some genes.
Nevertheless, a global analysis of all the data collected indicates a
similar pattern of expression of a series of characteristic surface
antigens and genes by hES cells that have been derived by different
laboratories, using various protocols, from different gene pools of
donated embryos. The similarities were evident despite the small
variations in culture media and conditions used by some laboratories.
All the lines examined expressed a comparable spectrum of genes and
surface marker antigens characteristic of hES cells, suggesting that
there is a common set of markers that can be used in general to
monitor the presence of pluripotent stem cells. Contrary to a recent
suggestion that SSEA3 and SSEA4 may not be acceptable markers for
hES cells because they are not essential for human ES cell pluri-
potency55, the expression of these antigens by all tested hES cells
makes them valuable operational markers of this cell type. Of course,
rare variants may emerge as more lines are studied. For example, the
known polymorphism for SSEA4 expression on red blood cells56

suggests that about 1% of hES cells derived from populations of
European ancestry may prove to be SSEA4(–), although for most
purposes SSEA4 is a good indicator for undifferentiated hES cells.
Also, the results do not exclude more subtle variations among the cell
lines, either with respect to quantitative levels of expression of specific
antigens or genes, or in differentiation. One observation that might
impinge on such potential variability is the evident potential for
culture adaptation and genetic instability of hES cell lines during
prolonged passage57,58.
The results of the current study demonstrate the existence of both

similarities and differences between hES and mES cells, as well as the
closely related molecular properties of hES and hEC cells. Thus, the
SSEA1(–)/SSEA3(+)/SSEA4(+) phenotype of hES cells versus the
SSEA1(+)/SSEA3(–)/SSEA4(–) phenotype of mES cells is con-
firmed3,12,59. Also the presence of markers of trophectodermal differ-
entiation in hES cell cultures agrees with the apparent increased ability
of hES cells to adopt this lineage of differentiation in contrast to their
murine counterparts60, although the failure to detect trophectodermal
differentiation in the hES cell xenograft tumors that were examined is
notable. On the other hand, of the group of genes whose expression
correlates closely with that of NANOG and appears to be characteristic
of the hES cells (NANOG, POU5F1, TDGF, GDF3 and GABRB3), all
are also expressed by mES cells, with the possible exception of
GABRB3 (refs. 13,16,17,61,62).
It was notable that several of the genes that showed a positive

correlation with NANOG expression (EBAF, PODXL, NODAL, ZFP42,
LIN28, EOMES and SFRP2) were identified in ChIP on CHIP
experiments as potentially direct targets of NANOG42. Also, several
other genes identified in that study as potential NANOG targets (ISL1,
PAX6, CDX2) showed a negative correlation in the present study.
Thus, combining the correlation data from gene expression experi-
ments with target-binding assays for pluripotency-specific targets may
provide insight into positive and negative control in the regulatory
networks that affect pluripotency in hES cells.
The results provided additional insight into the epigenetic status of

hES cells, for which relatively few lines have previously been stu-
died26,27,63. Overall, the results suggest that genomic imprinting

appears to be relatively invariant in hES cells, at least at the loci
examined here. Nevertheless, imprinting stability, as indicated by the
presence or absence of monoallelic expression, appears to be gene
dependent, with some imprinted genes showing a consistent pattern
in all hES cells and others being variable. In the case of one such
variable gene, IGF2, contrasting results were obtained between samples
of the same line, I3 (TE03), submitted by two separate laboratories
(that is, it was consistently monoallelically expressed in samples from
one laboratory and biallelically expressed in samples from the other).
This result suggests that changes in imprinting patterns of at least the
IGF2 gene and the nearby H19 gene26 can occur upon prolonged
culture. One possibility is that overexpression of IGF2, a likely growth
factor for hES cells, might provide variant cells with a selective
advantage. However, any conclusions must be tempered by the
recognition that detailed information about the allele-specific expres-
sion of imprinted genes in the early human embryo is mostly lacking,
and extrapolation from mouse embryo data might be misleading. Of
note in this connection is the variable genomic imprinting of
SLC22A18 in humans64,65. Derivation of hES cells could perpetuate
any such variability in imprinting if it were present in the inner cell
mass cells of the blastocyst, from which the hES lines were derived.
The studies of XIST expression by the hES cells examined provided

a mixed picture. Variation in X inactivation in the female lines,
inferred from XIST expression, matched variation evident from
contrasting reports of specific lines. One factor pertinent to this
variability is the apparent selective advantage offered by the presence
of multiple active X chromosomes in hES cells, suggested both by the
loss of X-chromosome inactivation40 and the appearance of multiple
X-chromosomes in late-passage, culture-adapted hES lines58. Alter-
natively, it may be that in hES cells, like in mES cells, X inactivation
occurs only after differentiation, and the differences between the
various samples result from partial differentiation within the cultures.
The conclusions of the histology studies are based on a limited

number of donated samples and must be considered tentative, but
nevertheless represent independent and direct comparative analysis of
tumors generated in different laboratories. Most xenografts produced
from hES cells in immunocompromised mice were teratomas com-
posed of fully differentiated somatic tissues. Strikingly, however, no
extraembyonic tissue, such as trophoblast, was identified, although
yolk sac–like tissue was tentatively identified around foci of hEC-like
cells. Some of the somatic tissues, most notably the neural tubes, were
immature, fetal-like, and proliferating, suggestive of a malignant
potential. This and also the apparent persistence of undifferentiated
hEC-like cells in a small number of xenografts raises the issue of the
malignant potential of hES cells and highlights the need for detailed
retransplantation experiments coupled with analysis of genomic
stability to assess its potential significance.
Studies of the biology of hES cells have developed rapidly over the

past eight years since the first reports of their derivation. They clearly
offer enormous potential, not only for regenerative medicine, but also
for drug discovery and toxicology, human developmental biology and
cancer research. Advances in all of these fields require internationally
co-ordinated work by numerous researchers to establish common
standards and procedures that will allow the ready cross-verification of
results between laboratories. The results of the present ISCI study
provide a step in this direction, and indicate the commonality of many
features of the hES cell lines currently in use. However, they do not
exclude the possibility of more subtle differences between lines, for
example, with respect to their differentiation potential. The present
study also does not address the extent to which the phenotype of hES
cells may be influenced by progressive genetic and epigenetic changes
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that can occur upon prolonged culture under suboptimal conditions.
A new initiative (ISCI2) is now planned to assess the nature of the
genetic changes that occur in hES cells on prolonged passage and to
compare the performance of various new media that have been
proposed for the long-term maintenance of hES cells under more
defined conditions. ISCI2 will also continue to maintain and expand
the International Stem Cell Forum’s Registry of validated hES lines
established in ISCI1 (http://www.stemcellforum.org.uk), by providing
arrangements for validation and inclusion of additional lines into
the future.

METHODS
Study design. Members of the International Stem Cell Forum were asked to

nominate laboratories in their countries that had derived hES cell lines. These

‘primary’ laboratories were invited to participate and to submit their hES cell

lines for comparison in the study. Initially 75 lines were registered with the ISCI

but, for practical reasons, material from only 63 lines was eventually analyzed

(Supplementary Table 6). Of these, four were duplicated, with material being

submitted both from a primary laboratory, and separately from cultures of

the same cells maintained in one of two ‘secondary’ laboratories. Thus the

study comprised 59 independent primary lines, together with the

four duplicates included to provide some insights into the stability of lines

between laboratories.

Owners of the different cell lines were asked to sign a participant’s

agreement, indicating that they agreed to inclusion of their hES cell lines in

the study, and confirming that the cell lines had been derived in accordance

with ethical standards for informed consent to embryo donation for research

comparable with those required for hES cell derivation in the UK. These lines

are generally available to the scientific community and contact details are

provided in Supplementary Table 7 online. The intention in the ISCI was that

analyses should be conducted in as consistent and reproducible a manner as

possible. Inevitably in a multilab study of this type, for quality control and

other reasons, not every line was represented in every assay. For logistical and

other reasons it was not practicable to transfer live cell cultures between

laboratories. Accordingly, flow cytofluorimetric analyses of antigen expression

were conducted in the individual laboratories of the ISCI participants. All other

analyses, however, were carried out by single reference laboratories using

samples prepared by the participating laboratories from their own cell cultures.

Participants were asked, where possible, to culture their cells using a standard

protocol and medium (‘Standard’ conditions), and to note any significant

deviations (see Supplementary Table 6). In some cases, they also provided

additional data and materials from cells grown under the conditions routinely

employed in their laboratories (‘Alternate’ conditions). Each laboratory ana-

lyzed and provided material from two cultures of each of their hES cell lines,

separated by at least one month, denoted as Time Point 1 (TP1) and Time

Point 2 (TP2). They also carried out a simple differentiation protocol by

culturing clumps of ES cells (embryoid bodies66) in suspension for 10 d, then

providing material from these for gene expression studies (see below), again on

two occasions. Because the embryoid bodies were only allowed to develop for

10 d, they were expected to retain a significant population of persisting hES

cells, as well as their newly differentiated derivatives. Conversely, experience

suggests that hES cell cultures themselves also contain some differentiated cells.

Data collection and analysis. An archive stock of hybridomas, comprising 17

monoclonal antibodies commonly used to study hES cells, was established at

the UK Stem Cell Bank (National Institute for Biological Standards and

Control, South Mimms, UK), with agreement from the different organizations

that own them (Supplementary Table 1). Single batches of antibody were

prepared, titrated and distributed to the participating laboratories for use in

flow cytofluorimetric analyses of antigen expression according to a standard

protocol. A well-characterized hEC cell line 2102Ep67 was provided and

cultured by each laboratory as a reference standard; for detailed cluster analysis,

data from assays that did not meet specified criteria with respect to antibody

reactivity with 2102Ep cells were excluded. Cells were also grown on glass slides,

fixed and dispatched to a single laboratory (M. Pera, Monash University,

Australia) for in situ immunofluorescence. DNA and RNA were prepared

centrally from cell lysates submitted by participating laboratories (The UK

Stem Cell Bank). Samples were then provided to single reference laboratories

for gene expression and DNA fingerprinting (Geneservice) and for imprinting

studies (P. Rugg-Gunn and R. Pedersen, University of Cambridge). Flow

cytofluorimetric and gene expression data were subjected to statistical analysis

(Computational Sciences Unit, The Jackson Laboratory). Culture samples were

tested for mycoplasma, bacteria, fungi and viruses (The UK Stem Cell Bank, at

National Institute of Biological Standards and Control), and preexisting slides

from xenografts were analyzed by a single, experienced pathologist (I. Damja-

nov, University of Kansas).

Cells and cell culture. Individual participating laboratories chose which cell

lines they would contribute to the initiative. Sufficient Knockout Serum

replacement (KSR), bFGF and ‘Knock-out’ DMEM was donated and distrib-

uted to each laboratory by Invitrogen from a single lot of each reagent. The lots

of KSR and bFGF were selected following a prescreen of two lots of each tested

for their ability to support culture of H7 hES cells. Each laboratory was asked,

where possible, to culture their cells in a ‘Standard’ medium, as previously

described68. Full details of this medium are provide in Supplementary Table 6,

which also records any significant deviations from this formulation adopted by

particular laboratories. Cells were maintained on inactivated feeder cells as used

by each group; in most cases these were mouse embryo fibroblasts but a few

laboratories used human fibroblast feeders.

Generally, cultures were passaged using collagenase and scraping68, but

exceptions are noted in Supplementary Table 6. Several laboratories also

provided samples of cells cultured in conditions normally used in those

laboratories, denoted ‘Alternate’ conditions. Generally, the most significant

difference between Standard and Alternate conditions was the use of FBS

rather than KSR to supplement the medium; details are provided in

Supplementary Table 6.

Cells were assayed and cell lysates prepared from two such undifferentiated

cultures of each hES cell line, passaged for approximately a month between

each sampling, denoted Time Point 1 and Time Point 2 (UT1 and UT2,

respectively). Two separate batches of embryoid bodies, (denoted DT1 and

DT2), were also prepared a month apart from each line by harvesting clumps of

hES cells from stock cultures using collagenase and scraping, followed by

culture in suspension for B10 d in the same medium as used to culture the

stock, undifferentiated hES cells.

For in situ antigen staining, each cell line was cultured in chambers

(QuadriPerm dishes, Sartorius) on glass slides (ethanol resistant multitest slide

with 12 wells, ICN, cat no. 604120E). After growth for several days the slides

were fixed in 70% ethanol vol/vol, dried and shipped to a single central

laboratory (M. Pera, Monash University) for immunofluorescence analysis.

For control purposes, each participating laboratory was provided with a

culture of 2102Ep cl.4D3 hEC cells to be cultured at high density (45 � 106

cells per 75 cm2 tissue culture flask) as previously described67. Limited

differentiation of 2102Ep cells was induced by culture at low cell densities

(seeding cells at 105 cells per 75 cm2 tissue culture flask). Undifferentiated

NTERA2 cl.D1 hEC cells were cultured, and differentiated NTERA2 cells were

induced with retinoic acid as previously described69.

Antibody production and antigen assays. Culture supernatants from each

hybridoma were collected and the resulting preparation for each antibody was

titrated by flow cytofluorimetry on 2102Ep and NTERA2 EC cells and NTERA2

cells induced to differentiate with retinoic acid, as previously described70.

Monoclonal antibody MC480 was tested on a mouse EC cell line, P19 (ref. 71).

Aliquots from single batches of each antibody were distributed to each

participating laboratory, together with a detailed protocol for flow cytofluori-

metry to test for antigen expression (Supplementary Methods online). In all

cases supernatant from the parental myeloma cell line P3X63Ag8 (ref. 72) was

used as a negative control, whereas reactivity with the pan-human antibody

TRA-1-85 (anti-Oka)37 was used as a positive control.

As a quality control for flow cytofluorimetry, each laboratory tested all

antibodies on the hEC cell line, 2102Ep67 and results from assays on hES cells

were only included in detailed further analyses if the laboratory scored 2102Ep

cells strongly positive (470%) for reactivity with at least three out of the

four antibodies, TRA-1-85 and the anti-keratan sulfate antibodies TRA-1-60,
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TRA-1-81 and GCTM2, and negative (o10% positive) for reactivity with the

negative control antibody from P3X63Ag8. Undifferentiated hEC cells, like

2102Ep, are typically strongly positive for TRA-1-85, TRA-1-60, TRA-1-81 and

GCTM2 reactivity and negative for reactivity with P3X63Ag8 (ref. 73). From

the remaining assays, data were excluded if the hES samples were scoredo50%

positive for reactivity with TRA-1-85. Aliquots of the same antibody prepara-

tions were provided to the Central Laboratory (M. Pera), responsible for in situ

staining of fixed cultures of hES cells.

Gene expression, imprinting and DNA fingerprinting. DNA and RNA were

prepared at the UK Stem Cell Bank from the Trizol lysates submitted by

participating laboratories. Samples were then provided to single reference

laboratories for gene expression and DNA fingerprinting (Geneservice) and

for imprinting studies (Rugg-Gunn and Pedersen, University of Cambridge).

For gene expression studies, Applied Biosystems (ABI) prepared a batch of

custom low density arrays (LDAs) using their proprietary microfluidics

Genecard system. All of primers used were designed by ABI to perform with

a measured efficiency of 100% ± 10% (http://docs.appliedbiosystems.com/

pebiodocs/00113186.pdf) (see Supplementary Table 3). These were analyzed

using Taqman based reagents74. Gene expression is reported as a DeltaCt value.

For each individual gene the number of amplification cycles for the fluorescent

reporter signal to reach a common threshold value (Ct) was estimated, and

then normalized by subtracting the Ct value obtained from the same sample for

a positive control transcript (in this case beta-actin), to give the DeltaCt value.

Thus an increase in DeltaCt of 1.0 represents a twofold decrease in relative gene

expression level.

The LDAs allowed for the simultaneous, triplicate analysis of gene expression

levels by quantitative PCR, for 96 genes (90 test genes and six internal controls,

see Supplementary Table 3). In addition quantitative PCR for three additional

genes was carried out by individual assays using primers provided by ABI.

Genes were selected for inclusion in the study on the following criteria:

(i) expression in hEC, primordial germ cells or hES cells, (ii) known role in

maintenance of pluripotency in hES cells including NANOG, SOX2, POU5F1,

(iii) identification in microarray-based experiments as being correlated with the

stem cell state, (iv) expression known to be characteristic of specific differ-

entiation lineages in the post implantation embryo and mature tissues. The

primers used were designed by ABI (see Supplementary Table 3). For two

genes, NANOG and TDGF, it was not possible to design primers that could

work on the LDA card to give unambiguous results. Primers for these genes

were therefore designed for use in individual assays. In addition a third

individual assay for XIST was included in the study due to data published

post design and manufacture of the LDA cards indicating potential variability

in XIST expression even between cell lines of the same sex.

Imprinting. Samples were analyzed for allele-specific expression patterns as

previously described26: for primers see Supplementary Table 8 online. Addi-

tional material from HES-3 and HES-4 cell lines cultured in BTI, Singapore was

also included in the imprinting study. For each gene, the contribution of the

‘minor’ allele to the total expression of the gene was calculated by measuring

the area under each SNP chromatogram peak using NIH ImageJ software.

Expression was considered to be monoallelic if the minor allele contributed

0–14% to the total expression of the gene; partial allelic expression was defined

as the minor allele expression contributing to 15–29% of the total expression;

and expression was defined as biallelic if the minor allele contributed 30–50%

of the total expression.

Microbiology. Culture samples were tested for the presence of mycoplasma,

bacteria and fungi at the UK Stem Cell Bank using in-house protocols. Samples

were also tested for induction of a cytopathic effect when inoculated onto

mouse embryo fibroblasts and MRC-5 human fibroblasts75 and also for

hemadsorption of chick and guinea pig red blood cells Selected samples,

including any showing apparent cytopathic effects, were also reviewed by EM

to assess the presence of any virus-like particles.

Histology of xenograft tumors. Participating laboratories submitted slides

from xenografts they had already produced for analysis to a single, experienced

pathologist. Some xenografts were produced from cloned lines of hES cells and

some were treated and or submitted to special growth conditions that were not

known to the pathologist who examined the grafts microscopically. All slides

were stained, routinely, with hematoxylin and eosin. Some slides were also

stained with the periodic Shiff ’s reaction, or with antibodies to smooth muscle

actin or neurofilament proteins.

Statistical analysis. General. Flow cytofluorimetric and gene expression data

were subjected to statistical analysis by The Statistics and Analysis Group of the

Computational Sciences Unit, The Jackson Laboratory, Bar Harbor, Maine,

USA., using R2.3.0 (http://www.r-project.org) software.

FACS data analysis. Boxplots were generated from the average values of data

which passed the quality control criteria (see antibody production and antigen

assays section). Data were considered to be outlying when falling greater than

1.5 times the interquartile range and are indicated by open circles. The

distribution of percentage positive cells in the flow cytofluorimetric assays

was skewed to the right, so that a Logit transformation was applied to all the

data. The transformed data were used for statistical analysis. Data for both the

control cell line (2102Ep) and control antigens (P3X, TRA-1-85) were exam-

ined. Data points failing to meet quality control criteria as described above

(Antibody Production and Analysis) were excluded. As a result, data were

analyzed from 44 cell lines provided by 12 laboratories. Measurements at two

time points were averaged and the averaged values were used in clustering

analysis. Two-way hierarchical clustering analysis with Euclidean distance as a

dissimilarity measure was performed. A heat map plot was generated to show

clusters for both antigens and cell lines.

Gene expression analysis. Quantitative PCR expression data for 99 genes from

61 cell lines (57 primary lines and 4 duplicate lines) were recorded in this part

of the study. Six out of the 99 genes were control genes. For both differentiated

and undifferentiated cell lines, all genes were measured at two time points. At

each time point, triplicates were recorded to minimize measurement error and

gene expression was normalized to b-actin (ACTB); the s.d. for each triplicate

was calculated. Outliers were excluded from the triplicates with a s.d. 42.

Averages of the triplicate gene expression data were used for further statistical

analysis. Statistical analysis: Two-way hierarchical clustering with Euclidean

distance was performed. Heat map plots were generated to present clusters for

both cell lines and genes. Pearson correlations among genes were calculated.

The correlations between NANOG and every other gene were calculated

taking into account the interaction effects of cell lines, differentiation condi-

tions and time points. Genes that have greater correlations with NANOG are

expected to have the same expression pattern as NANOG across the combina-

tion level of cell line, differentiation and time point.

Cell line availability. Supplementary Table 7 online provides contact infor-

mation and conditions of availability for the cell lines described in this study.

Materials transfer agreements indicated in this table are provided in Supple-

mentary Notes online.

Note: Supplementary information is available on the Nature Biotechnology website.
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